skip to main content


Search for: All records

Creators/Authors contains: "Houghton, Isabel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drifting buoy observations of ocean surface waves in hurricanes are combined with modeled surface wind speeds. The observations include targeted aerial deployments into Hurricane Ian (2022) and opportunistic measurements from the Sofar Ocean Spotter global network in Hurricane Fiona (2022). Analysis focuses on the slope of the waves, as quantified by the spectral mean square slope. At low‐to‐moderate wind speeds (<15 m s−1), slopes increase linearly with wind speed. At higher winds (>15 m s−1), slopes continue to increase, but at a reduced rate. At extreme winds (>30 m s−1), slopes asymptote. The mean square slopes are directly related to the wave spectral shapes, which over the resolved frequency range (0.03–0.5 Hz) are characterized by an equilibrium tail () at moderate winds and a saturation tail () at higher winds. The asymptotic behavior of wave slope as a function of wind speed could contribute to the reduction of surface drag at high wind speeds.

     
    more » « less
  2. Abstract

    Variability in the El Niño‐Southern Oscillation (ENSO) has global impacts on seasonal temperatures and rainfall. Current detection methods for extreme phases, which occur with irregular periodicity, rely upon sea surface temperature anomalies within a strictly defined geographic region of the Pacific Ocean. However, under changing climate conditions and ocean warming, these historically motivated indicators may not be reliable into the future. In this work, we demonstrate the power of data clustering as a robust, automatic way to detect anomalies in climate patterns. Ocean temperature profiles from Argo floats are partitioned into similar groups utilizing unsupervised machine learning methods. The automatically identified groups of measurements represent spatially coherent, large‐scale water masses in the Pacific, despite no inclusion of geospatial information in the clustering task. Further, spatiotemporal dynamics of the clusters are strongly indicative of El Niño events, the east Pacific warming phase of ENSO. The fitting of a cluster model on a collection of ocean profiles identifies changes in the vertical structure of the temperature profiles through reassignment to a different group, concisely capturing physical changes to the water column during an El Niño event, such as thermocline tilting. Clustering proves to be an effective tool for analysis of the irregularly sampled (in space and time) data from Argo floats and may serve as a novel approach for detecting anomalies given the freedom from thresholding decisions. Unsupervised machine learning could be particularly valuable due to its ability to identify patterns in data sets without user‐imposed expectations, facilitating further discovery of anomaly indicators.

     
    more » « less